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4001. USA 

Received 4 June 1993 

Abstract. An analytic solution to the elecuostatic problem of a multi-gated-small-junction 
system in the semiclassical regime is presented. As an example, the formula derived is used to 
analyse the stable domain for the Coulomb blockade at zero DC voltage and zera tempemu% 
for systems with am-galed small junctions, which models various important devices such as 
the single-electron pump and double dots. 

1. Introduction 

Due to progress in nanoscale fabrication techniques, the study of correlated singlecharge 
tunnelling (single electronics) has recently become a field of widespread interest [l]. In a 
single small tunnel junction, having capacitance CJ such that the charging energy e2/2Cj 
exceeds the characteristic energy ksT of thermal fluctuations, it is found that the Coulomb 
blockade, a suppression of single charge tunnelling, dramatically reduces the current at 
voltages V e e/2C1. More recently, much attention has been focused on the multi-gated- 
small-junction (MGSJ) systems [2-12]. where several small tunnel junctions are fabricated in 
series with the regions (the islands) between them being controlled by gate voltages through 
gate capacitances (see figure 1). It is found that by capacitive charging of the island between 
any two junction baniers, the Coulomb blockade in a gated junction becomes controllable. 
which forms the basic idea of the singleelectron device. To date many sophisticated multi- 
gad-junction devices have been built. Among them are the single-elecnon box [7] (1 
junction + I gate), the single-electron transistor [5,6] (2  junctions + 1 gate), the sinf’e- 
electron pump [9] (3 junctions + 2 gates), and the singleelectron turnstile [SI (4 junctions 
+ I gate). The devices [ 1-41 are potentially useful for metrological applications such as the 
realization of a current standard. 

The operating principle [2-4] of an MGSJ device can best be understood at zero 
temperature, where a charging state In,, nz, . . .) of excess electrons on the islands becomes 
stable when the tunnelling of a single electror. through the surrounding junctions is 
energetically unfavourable, and it can be changed in a controlled manner by manipulating 
the gate voltages so that a single electron moves in a designed way. It follows that the 
determination of the stable domain of a charging state (nl, n2.. . .) in the gate voltage space 
(VI,  U,, . . .I at T = 0 is the crucial step in understanding the physics of the MGSJ systems. 
In principle, the stable domains can be exactly located by using basic electrostatics to 
evaluate the energy change AE, due to the tunnelling of an electron through the ith junction 
(i  = 1,. . . , N ) ,  which requires the solution of a set of 2N - 1 h e a r  equations for the 
corresponding charges on the N junctions and N - 1 gate capacitors. In  the literature, several 
studies of the stable domains of the MGSJ systems appear for the cases of (i) infinitely large 
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Figure 1. An N-gated-small-juwtion system consisting of N tunnelling junctions with 
capacitances C I ,  C2. , . ., C.W. and tunnelling resiswces R I ,  Ri. , , ., R N ,  The end junctions are 
biased by a symmeh’ical voltage V. and N - I islands between the tunnel ‘unctions are coupled 
to gate v o ~ ~ l g e s  U,, ~ 2 ,  . . .. u N - 1  through capacitors c;”. c?), . . ., ~i J- ”. 

number of junctions [4], (ii) no gate voltages 121, (iii) negligibly small gate capacitances 
[3] C, (C, << CJ, where CJ is the junction capacitance), and (iv) extremely large gate 
capacitance C, [I I] (C, >> CJ). It is interesting to note that the latter two papers both study 
the N = 3 MGSJ systems, referred to as the single electron pump and double dot, respectively. 
For T -+ 0. it is found that for the single electron pump [3] the stable domains in the gate 
voltage plane form a periodic lattice (which implies periodic Coulomb blockade oscillations 
in the conductance G), while for the double dot the authors of [ I l l  concluded that the 
periodic structure in the conductance gives rise to a system of random peaks. Thus it is of 
great interest to study the N = 3 MGSJ systems in a more general manner and to see what 
happens at a finite ratio of C,/C,.  

In this paper we do two things. First, we present a two-step operation scheme to solve 
the 2N - I linear equations appearing in the electrostatic problem of the N-gated-junction 
systems. Second, the general scheme is used to analyse the problem of the ( N  = 3)-gated- 
junction system analytically. 

The rest of the paper is organized as follows. In section 2 we present a general study 
for the charge states in N-gated-junction systems. In section 3 analytic solutions for the 
( N  = 3)-gated junctions are presented. In particular, we give a detailed study for systems 
with equal junction capacitance CJ. Our main results are summarized in the concluding 
section. 

2. Charge states in a multi-gatedamall-junction system 

Consider an MGSJ system that consists of a linear array of N small junctions (see figure I )  
with capacitances CI,  Cz, . . . , CN,  and tunnel resistances R I ,  Rz,  . . ., RN. The end junctions 
are biased by a symmetrical voltage V. and the islands (total number N - 1) between the 
N junctions are connected through capacitors C;”. CAz’. . . .. C i N - ] )  to the gate voltages 
UI, Uz, .... U N - I .  We assume that Ri >> RX h/ez ,  which is the condition of weak 
coupling and ensures that, for an excess electron on an island, the Coulomb energy exceeds 
the energy uncertainty due to tunnelling or, in other words, the wave function of the excess 
electron is localized on the island. In the literature, in some instances the MGSJ system is 
named after the number of islands it contains [ 111, and in a number of other works for the 
N = 2, 3, and 4 MGSJ systems it has been referred to, respectively, as the single-electron 
transistor c5.61, single electron pump [9], and single-electron turnstile [SI. 
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We adopt the semiclassical model [2-4,11.12] to describe the MGSJ system. In 
this model the voltage Vj across the jth junction (or capacitor) is a classical variable 
calculated by Vj = C j Q j ,  where Qj is the charge on the j th  junction. The state 
of the system at a given time is then described by a set of 2N - 1 variables 
( Q I ,  Q z ,  ... , Q N ,  QL'), Q p ,  ..., QkN-')] ,  where Qf) is the charge on the kth gate 
capacitor. The tunnelling of an electron, of charge -e, through a junction will 
change the charge distribution and thus all the voltage values of the junctions. It is 
convenient to describe the state of the system by another set of 2N - 1 charge variables 

and nj is the number of excess electrons on the j th island. (Q,, . . .) are related to {CV,  . . 
by the charge conservation equations 

{ C V ,  C ; ) U ~ ,  . . ., ciN-N-"~N-I. n ie ,nze , .  . . ,nN- ie] ,  where C-' = c;'+c-' * + ...+ c;' 

Qi+l  - Qi - Q f '  = nie (i = 1. 2, .  . . , N - 1) (2.1) 
and by Kirchhoff s equations 

(2.2) 

(2.3) 

From 2N - 1 linear equations (2.1>(2.3), the voltage drop across each of the junctions 
and gate capacitors can be determined for given values of V ,  (Ui ] ,  and {n i l .  We note that 
equations similar to (Z.lX2.3) have been previously obtained by Amman et a1 [121. The 
difference here is that we have added, realistically, a gate voltage source for each of the 
gate capacitances. Also, we present an analytical way to solve (2.1H2.3) in the following. 

In the simplest case, where gate voltages {Vi] and capacitors (C:)] are absent, the 
system reduces to N junctions in series [2], which can be described by N variables 
{ Q l ,  Qz,  . . . , Q N ]  subject to the N linear equations (2.1) and (2.3) with Q t )  = 0. These 
N linear equations can easily be solved by a substitution method, and the results are 

N-1 N k- I 
Q k  = Q + e C  E - e x n j  (k = 1, 2, .. ., N) (2.4) 

i = l  m=j+i Cm j=1  

where Q = CV and where it is understood that the last term vanishes when k = 1. 
From (2.4). it is clear that a single electron tunnelling through one of the junctions 
will cause a change of the entire charge configuration { Q l ,  Q2, . . . , Q N ] .  Denoting the 
char e of the kth junction, after the tunnelling of an electron through the ith junction, as 
Qk - Qx(n l ,nz , .  . . ,n i - z ,n i - ,  & 1. ni F l , n i + 2 , .  . . , n ~ - l ) ,  where the +(-) sign refers 
to backward (forward) tunnelling through the ith junction, a relationship between Qi* and 
Qk can be derived directly. After collecting terms due to the change from ni-l and n i ,  to 
ni-1 If: 1 and ni F 1, respectively, we obtain from (2.4) 

1i*? = 

QF = el 7 Z Q ~  
where Q ,  is given by (2.4), and 

Q$ = ie(8i.l - C/Cj ) .  

Another useful quantity, the energy change A E Y )  of the kth junction due to the tunnelling 
of an electron through the ith junction can be conveniently evaluated from (2.5) as 

(260)  
ti*) 2 AEf*) = (1/2Cx){ [Q, ] - Q i )  = (zQz/ck)(?Qt + e,",). 
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In particular. for k = i, 

AE;"' = (e /Ci)( l  - C / C i ) [ r Q i  + $e(l - C / C i ) ]  = (e/Ci)(l - C / C i ) [ r Q i  + Q f ] .  

From (2.5) and (2.6), one can directly obtain the internal energy change Ax,' due to the 
tunnelling of an electron through the ith junction 

G Y Hu and R F O'ConneN 

(266) 

In the literature it is common to add to the intemal energy change the work done by 
the voltage source to give the total electrostatic energy 121 

AK* = A,$ (C/Ci)eV = (e /Ci)[FQi + Q f ]  (2.8) 

which is used to evaluate the singleelectron tunnelling rate through the ith junction at T = 
0. From (2.8). one then concludes that when AW: > O(lQi[ 4 Q f ) ,  the tunnelling of an 
electron through the ith junction at T = 0 is not allowed by viitue of the electrostatic energy 
consideration for the system, and the stable configuration of the charge (n i ,  n2. . . . , nN-,} is 
thus maintained. On the other hand, one notices that the condition AW: 0 from (2.8) is 
equivalent to the condition A E y  > 0 from (2.66). which suggests that the latter can also 
be adopted as a rule to determine the singleelectron tunnelling event at T = 0. Physically, 
the AE;'"' > 0 rule identified here is even more plausible, because it simply says that at 
T = 0 whether a single electron tunnels through the ith junction depends only on AE:*) 
which is the energy change of the ith junction due to the tunnelling of an electron through 
the ith junction. Since A E y  is easier to evaluate than A V  (which involves a sum over 
AE;"'), we will adopt the A,$*' 0 rule as the T = 0 Coulomb blockade condition in 
this paper. 

In general, we find that the 2N - 1 linear equations (2.1H2.3) an be conveniently 
solved through a two-step operation. First, by introducing the effective charge 

(2.9) a!) = Q:) - nie 

we rewrite (2.1) as 

Q i -  Qi+i = -Q:' i = 1, 2, ..., N - 1. (2.10) 

Using (2.3) and (2.10), similar to (7.4). we obtain solutions 

k-I 

j-1 n=j+l C m  j - 1  

' Q n = Q - C C  N - l  -+xQp"' Q P  ( k = l ,  2, ..., N). (2.11) 

Thus, we have obtained an expression for each junction charge in terms of the effective 
charges. It now remains to determine the latter. Next, we use (2.9) again to rewrite (2.2) 
as 

( ; = I ,  2, ..., N - 1 )  (2.12) 
k=l 

(2.13) 
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Substituting (2.1 1) into (2.12). we obtain N - 1 linear equations for [@)) as a function of 
( i t ]  and V .  Mer some algebra, we obtain from (2.11) and (2.12) 

where M-' is the inverse of the (N - 1) x (N - 1) matrix M, which has elements 

(2.14b) 

Thus (2.1 1). supplemented by (2.14). is a key result, as it constitutes an expression for each 
junction charge in terms of the island charges and gate voltages. We now use these results 
to determine the conditions for the Coulomb blockade. As stated earlier, in order to study 
the condition for the Coulomb blockade of the system, one needs to evaluate A E y '  of 
(2.G). For this purpose, we first derive, from (2.11) and (2.14). an expression, similar to 
(2.5a), for the charge QF of the ith junction after the tunnelling of an electron through 
the ith junction in the form 

Q? = r z ~ f  (2.15~) 

where Q i  is now given by (2.11), supplemented by (2.14). and 

(2.156) 

after which we obtain 

AEl'f' (1/2Cj)[ [Q, ( i l )  ] 2 - Q ; }  = (ZQ~/C;)[FQ; + Qf]. (2.1%) 

When gate capacitances [C:') and gate voltages [Uk) are absent it is straightforward 
to show that (2.11) and (2.15) reduce, respectively, to (2.4) and (26). Also, if the 
gate capacitance is much smaller~than the junction capacitance, then (2146) reduces to 
M,,,. N -a,, and (2.14~~) becomes Q y )  0 - &, where i i ~  is given by (2.13). This latter 
approximation has been used in many of the studies appearing in the literature [3]. Our 
exact solutions (2.11) and (2.14) to the electrostatic problem (2.1H2.3) for MGSI systems, 
together with the energy change (2.15). provide a full description of the problem. In the 
following, we apply (2.9H2.14) to the special cases N = 2 and N = 3. 

When N = 2 (the single-electmn transisto?), [Qp, C p ,  U k , i h ]  has only one 
component which will be denoted as [Q8, C,, U, ii). In this case, (2.14) and (2.1 1) reduce 
respectively, to 

(2.16) 8, = (I/CX)[~(C~ - C~)C,V - (c, + c Z ) ~ e ]  

and 

Qk = Q + (-l)k(l - C/S)Gg (2.17) 

where C x  = C I  + CZ + C, and C-' = C;' + C;'. Also (2.15) reduces to 

Equations (2.16H218) are well known results in the literature [1,2]. Next we present a 
non-trivial case of our formalism, the N = 3 case. 
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When N = 3, the matrix elements of (2.14b) reduce to 

Mmx = -6,x[I +CF’(C/CZ)(~~~/CI  +S,,/C,)] -CP’C/C1C3 

It follows that the inverse of the matrix M defined by (2.19) can be worked out manually 
and that one can write (2.14a) explicitly as 

m, k = 1, 2. 

(2.19) 

Qt) = Dii’/D (i = 1, 2) (2.204 

where 

D = MiiMzz - MizMzi (2.206) 

(2.20c) 

D‘” = M I ~ [ ~ ~ ~ ~ + C ~ V ( C / C ~ - ~ ) ] - M Z ~ [ ~ ~ I ~ + C ~ ” I ‘ ( ~  -c/c~)]  (22Od) 
and Mmk is given by (2.19). Also, (2.1 1)  reduces explicitly to 

(2.21a) 

(2.21b) 

(2.21c) 

Do’ = Mn[fiie + CA”V(4 - C/Cl)] - M12[Eze + Ciz)V(C/C3 - 5)] 

Q i  = Q - Qf’(1 - C/Cl) - Qf’C/C, 

Qz = Q + Q:’C/C] - Q:’C/C3 

Q3 = Q + QC’C/C, + Qf’(1- C/C3). 

The energy change A E F )  of (2.15) due to the tunnelling of an electron through the ith 
junction can be obtained by using (2.20) and (2.21). At V = 0, the results take the following 
simple forms: 

where 
A E F  = (ZQf/Ci)[rQ; + Qf] 

Q: = (e/2D)[(Mii + Mzi)C/C3 + (Mz + Mi~)C/C~]  

(2.224 

(2.22b) 

(2.m) 

(2.22d) 
We will analyse the general formalism (2.19H2.22) for the N = 3 MGs systems in the next 
section. 

Qf = (e/2D)[Mzz(C/G + C/G) - M z I C / C ~ ]  

Qf = (e/2D)[Mtl(C/Cl+ C/CZ) - MIzC/CI]. 

3. Coulomb blockade in an (N = 3)-gated-small-junction system 

In this section we use our exact solutions (2.19H2.22) to analyse the Coulomb blockade 
in and (N = 3)-gated-small-junction system at V = 0 and T = 0. For ease of discussion, 
we assume equal junction capacitances CI = C, = C3 = C, but with no restriction on 
the values of CL” and CAz’. This is a case of great experimental and theoretical interest 
[3,9,1 I]. When Cj >> Ci) ,  Cp, the system corresponds to the single electron pump I3.91 
while for Cj << CY’, Cfl, it i s  referred to as the double quantum dot [ I  11. 

When Ci = CZ = C3 = Cj, the combined results of (2.19H2.22) at V = 0 take a 
simple form 

QI = (e/3D)[(2 + B ) ( ~ I  - x )  + nz - ( B / ~ Y ]  (3.1) 

Q3=@/3D)(ni - X + ( ~ + ( Y ) [ ~ Z - L B / ( Y ) Y ] }  (3.3) 

Q z = ( e / 3 D ) ( ( 1 + n ) [ n z - ( B l n ) y ] - ( l + B ) ( n i  - x ) }  (3.2) 



Mulri-gated small-junction systems 7265 

where 

x = C i ' U l j e  y = C ? ' L I ~ / ~  a = C'"/cj g ,8 = C 2 ' / C j  (3.4) 

and D = 1 + f ( 2 a + 2 , 8 + a b ) .  
As usual, at T = 0 when AE: > 0 the tunnelling of an electron through the ith junction 

is blocked. Based on this consideration, we use (2.22) and (3.1) to find the condition for 
an island state (n , ,  112) to be stable with respect to the tunnelling of an electron through any 
of the junctions in the system. The results are 

(2+,8)n1 + n z  - 1 - f , 8  c ( 2 +  ,8)x + y < ( 2 +  ,8)nl + n z +  1 + $8 

( 1 + a ) n ~ - ( 1 + f l ) n l  - ~ - ~ ( ~ + , ~ ) ~ ( I + ( I ) Y - ~ I + B ) X C ( I + ( Y ) ~ ~ - ( ~ + , ~ ) ~ Z  

(3.5) 

+ 1 +$(a + B )  (3.6) 

(3.7) nl + ( 2 + a ) n z  - I - $a < x + ( Z + a ) y  c n l  + (2+a)n2  + 1 + fa. 
The six inequalities contained in (3.5H3.7) define a region: the stable domain in the U,- 
Uz(x-y) plane within which the island state ( n l , n z )  for the excess elechons is stable. We 
note that in the limit a, fl  + 0, ( 3 3 4 3 . 7 )  reduce to the results of Pothier et al [3,91 (in 
particular, see figure 14 of [3]) for the stable domains of their single electron pump. 

In general, from (3.943.7) we find that the shape of a stable domain strongly depends 
on the values of a and ,8. Also, for any given values of a and ,8, a fixed shape of stable 
domain fills the entire x-y plane with rectangular transitional symmetry, where the central 
coordinates of each domain are (nI,a/,8nz). We now present detailed studies for various 
interesting cases of a and p. 

First, we consider the 01 = ,8 case where the stable domains in the x-y plane possess 
square translational symmetry. The shape of the stable domain can be worked out using 
(3.5H3.7) at nt = nz = 0. The results are presented in figure 2(a), where we plot the (0,O) 
domain for a = 0.0.1. 1, 10, 03. Also, aglobal view of the stable domains is illustrated by 
figure 2(b),  where we plot the a = 1 case as an example. As can be seen from the figure, 
in general the stable domain has a hexagonal shape (except for the a = 03 case which 
converges to a square). The vertices of the hexagons are special (triple) points in the UI-UZ 
plane where three neighbouring domains share a common point, and the presence of these 
triple points is the basis of the single electron pump [3]. Our results seen in figure 2 clarify 
two basic points: (i) the distance xp between two neighbouring triple points depends on the 
value of a, which has an analytical form xp = 1/(3 +a); (ii) for large enough 01 the two 
neighbouring triple points are practically unidentifiable and the pump ceases to operate. 

Next, we study the a # @ case. Two examples of the stable domains, as calculated 
by (3.5W3.7). are presented in figure 3: (a )  a = 0.1, fl  = 0.25; (b)  a = 10, ,8 = 25. As 
can be observed from the figure, the distance between the neighbouring domains in ihe 
x-y (defined by (3.4)) plane along the y direction equals a/@ (1 for the a = ,8 case). 
As a result, the smaller the value of a/,8 the more frequent will the conductance peak of 
Coulomb blockade oscillations appear as a function of UZ. This is reasonable, because in 
the CL2' >> Ct)(a/,8 + 0) limit one expects the second island to act like an external lead, 
and the Coulomb blockade is no longer operative. Another consequence of the periodicity 
of a/,8 along the y direction is that the conductance oscillates along the U, = U& = y) 
line in different ways. When alp is a rational number the conductance still oscillates 
periodically, whereas when alp is an irrational number G oscillates non-periodically but 
in a predictable way. Thus, we have provided a deterministic explanation for the 'random 
peaks' in the conductance oscillations for the doubledot system discussed in [ I l l .  
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Figure 2. Stable domain ( n ! ,  n2), where n l  and n2 ~n the numbers of excess electrons on the 
first and second islands respectively, in the gate volrage U142 plane for (N = 3)-ga.led-small- 
junction systems with equal junction capacitances C, and equal gate capacitances C,: (a) a 
singJe mble domain at various valuer of U =_ C,/C, = 0.0.1, 1, 10, w, (b) an example of a 
global view of the stable damaim: 01 = 1. 
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(Q) 

t 1  
Fiare 3. Stable domain (nt,n2). where nl and n2 are lhe numben of excess eleC@oON on the 
first and second island mpctively. in the gale voltage U142 plane for (N = 3)-gated-sd- 
junction systems with equal junction capacitances C, and unequal gate capacitances C;” and 
Cf’: (a) C t ’ / C ,  = 0.1, C:”/Cj = 0.25; (b)  Cl”/C] = IO. Cf’IC] = 25. 

4. summary 

In this paper, we have presented an analytical expression (2.1) (supplemented by (2.14)). 
for the charges on the junctions in an MGSI system where the junctions are in series 
and connected through capacitors to gate voltages. Our analysis suggests that the ch e 

of (215). due to the tunnelling of an electron through that particular junction, provide a 
full description of the Coulomb blockade phenomenon for the system at T = 0. For the 
two-junction ( N  = 2) case, our result reduces to the well known results (2.16)-f2.18) for 
the single-electron transistor. When N = 3, we obtain general results (2.19H2.22). which 
reduce for the case of equal junction capacitance Cj to the simple forms (3343.7). Based 
on (3343.7). we find that the shape of a stable domain for the Coulomb blockade of a N 
= 3 MGSI system at T = 0 depends strongly on the relative values of (I and f3 ((I = Ct ) /C j .  
f3 = Ci*’/Cj). For any given value of (I and f3 ,  a fixed shape of stable domain fills 

expression (2.11) together with the energy change for any (say the ith) junction, AEi %) 
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the entire gate voltage (u1-U~) plane with rectangular translational symmeby, where the 
central coordinates of each domain take the values of (nl ,  c m z / B )  in the C~1’U,/e-C~2)U~/e 
plane. The general formula is applied to analyse the stable domains for the single electron 
pump and the double-semiconductor-dot systems. For the single electron pump, we give 
a quantitative analysis for the distance x p  between two neighbouring triple points in the 
domain plane. For the double-dot system we show that when C f ’ / C f ’  is an irrational 
number the conductance G oscillates non-periodically but in a predictable way. We expect 
the general solution for the MGSJ system presented in this paper to be useful for the analysis 
of single-electron devices with four or more junctions. 
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